
C
 O

 R
 P

 O
 R

 A
 T

 E

 T

 E
 C

 H
 N

 O
 L

 O
 G

 Y

Software &
Engineering

Discrete
Optimization

An Extremely Fast, Exact Algorithm for Finding
Shor test Paths in Static Networks with

Geographical Background

Ulr ich Lauther

Siemens AG, München
ulr ich.lauther@siemens.com

Over view

• Application Scenarios and Motivation

• Demonstration

• Basic Idea - Definition of Edge Flags

• How to Use Edge Flags

• How to Calculate Edge Flags

• How to Define Regions

• Results

• Conclusions

© Siemens AG, CT SE 6 lr 05/2004

Motivation

Application Scenarios:

• Autonomous Car Navigation Systems:
need cheapest hardware
need short response time for one path calculation

• centralized traffic guidance system in client/server architecture:
powerful hardware
need high throughput of the server responding to many requests

Resources:

• vir tual memor y / RAM

• online CPU-time

• often ignored: preprocessing time

Complexity of Shortest Path Calculations:

For a graph G = (V ,E) with n nodes and m edges, we have

• Worst case complexity of Dijkstra’s algor ithm: between O(n2) and O(m),
depending on assumptions on density and edge length distibution.

• Expected runtime for shor test path calculations on a roadmap: O(d 2 log d)
where d is the number of edges in the shortest path.

© Siemens AG, CT SE 6 lr 05/2004

Demonstration

© Siemens AG, CT SE 6 lr 05/2004

Common Remedy: Heuristics

• Layer concept

• Modified A* algor ithm

Drawback:

• no guarantee for good solution

Much less used and investigated: preprocessing

• trading preprocessing time for runtime in application

© Siemens AG, CT SE 6 lr 05/2004

Preprocessing - Basic Idea

Road map is partitioned into r regions:

• regions are connected and constitute a parcelization, e.g., rectangular
parcelization

• each node belongs to exactly one region

Tw o edg e flags are calculated per edge and region:

for each edge e = (v ,w) and each region i we calculate v _flage,i and w _flage,i , s.t.

v _flage,i =1 iff ∃ shor test path into region i from node v over edge e

w _flage,i =1 iff ∃ shor test path into region i from node w over edge e

Memor y: 2*number_of_edges*number_of_regions bits

© Siemens AG, CT SE 6 lr 05/2004

How to Use Edge Flags:

int dijkstra(Graph& g, Node* source, Node* target) {

int target_region = target->region();

Node* v;
forall_nodes(v,g) v->dist = ∞; // initialize all nodes

priority_queue q; // initialize priority queue
source->dist = 0;
q.insert(source);

while ((v = q.del_min())) { // while q not empty
if (v == target) return v->dist;
Node* w;
Edge* e;
forall_adj_edges(w,v,e,g) { // scan node v
if (! flagged(v,e,target_region)) continue;
if (w->dist > v->dist + e->length) {
w->dist = v->dist + e->length;
if (q.member(w)) q.update(w);
else q.insert(w);

}
}

}
return ∞;

} // dijkstra

© Siemens AG, CT SE 6 lr 05/2004

The Problem of Cones

• Problem: near the target region many edges will be flagged

• Solution: bidirectional path calculation

• edge flags needed for "wrong" direction!

• Memor y: 4*number_of_edges*number_of_regions bits (for bidirectional edges)

© Siemens AG, CT SE 6 lr 05/2004

How to Calculate Edge Flags

Simple But Dead Slow Method:

for all regions i {

for all nodes u of region i {

calculate shortest path tree rooted at u;

for all edges e = (v,w) {
if (w->dist == v->dist + e->length) e->set_flag(w,i);
if (v->dist == w->dist + e->length) e->set_flag(v,i);

}
}

}

Above code needs to be run twice: for forward and backward traversal of edges.

© Siemens AG, CT SE 6 lr 05/2004

A Faster Method: expand from expor ted nodes only

If an edge crosses a region boundary, the two incident nodes are exported nodes.

A shor test path from outside the region into the region must cross an expor ted node.

© Siemens AG, CT SE 6 lr 05/2004

A Fast but Wrong Method: Expand from all expor ted nodes of a region simultaneously

• Implementation: put all expor ted nodes with distance 0 into prior ity queue, then
run standard Dijkstra

• Resulting edge flags describe shortest path to nearest expor ted node.

• This is not necessarily a shortest path to a target node inside the region.

A Fast Method: use similarity of shortest path trees rooted at neighboring nodes

Runtimes for Various Methods:

Mode Runtime Comment

Expand from all nodes 9 weeks extrapolated
Expand from expor ted nodes 4.2 hours extrapolated
The fast method 12 minutes measured

Memor y Needs:

• In principle: 4 * r * m bits

• Using compaction: 6.9 bytes/edge with 139 regions

© Siemens AG, CT SE 6 lr 05/2004

How to Define Regions

Possible Methods:

• Use parcelization of the application

• Gr id based

• Square Cover Algor ithm

• Other cluster methods

© Siemens AG, CT SE 6 lr 05/2004

Results

Speed-up in Target Application measured using 300 random source/target pairs

Nodes 326159
Edges 513567
Regions 139
Runtime without preprocessing [sec/path] 0.302
Runtime with preprocessing [sec/path] 0.0047
Speed-up 64.3

Average speed-up: 64

Long paths: Runtime drops from O(d 2 log d) to O(d)

© Siemens AG, CT SE 6 lr 05/2004

Av ailability

• The concept of edge flags and associated algorithms are protected by a patent.

• Source code licenses are available.

Conclusions

• A new preprocessing technique for static graphs with coordinates in nodes

• Resulting shortest path calculations are exact and extremely fast

© Siemens AG, CT SE 6 lr 05/2004

Thanks for listening!

Still questions?

© Siemens AG, CT SE 6 lr 05/2004

